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Abstract—Design patterns are elegant and well-tested solutions
to recurrent software development problems. They are the result
of software developers dealing with problems that frequently
occur, solving them in the same or a slightly adapted way. A pat-
tern’s semantics provide the intent, motivation, and applicability,
describing what it does, why it is needed, and where it is useful.
Consequently, design patterns encode a well of information. De-
velopers weave this information into their systems whenever they
use design patterns to solve problems. This work presents Feature
Maps, a flexible human- and machine-comprehensible software
representation based on micro-structures. Our algorithm, the
Feature-Role Normalization, presses the high-dimensional, inho-
mogeneous vector space of micro-structures into a feature map.
We apply these concepts to the problem of detecting instances of
design patterns in source code. We evaluate our methodology on
four design patterns, a wide range of balanced and imbalanced
labeled training data, and compare classical machine learn-
ing (Random Forests) with modern deep learning approaches
(Convolutional Neural Networks). Feature maps yield robust
classifiers even under challenging settings of strongly imbalanced
data distributions without sacrificing human comprehensibility.
Results suggest that feature maps are an excellent addition in
the software analysis toolbox that can reveal useful information
hidden in the source code.

Index Terms—feature maps, micro-structures, design patterns,
machine learning, random forest, deep learning, convolutional
neural networks, program comprehension, reverse engineering

I. INTRODUCTION

Design Patterns (DPs) are elegant and well-tested solutions
to recurrent software development problems. Design Patterns –
Elements of Reusable Object-Oriented Software, by Gamma et
al. [2], is the best-known collection of patterns and inspiration
for many follow-ups. They are the result of software developers
dealing with problems that frequently occur, solving them in the
same or a slightly adapted way. DPs are the generalization of the
different adapted implementations, such that they can be reused
and applied over and over again in different situations. They
solve high-level Object-Oriented (OO) architectural problems
dealing with creation, structure or behavior of a small set of
classes or objects, but may also circumvent deficiencies and
inflexibilities in OO languages.

Pattern descriptions are very detailed and contain their
name, intent, motivation, where they are applicable, structures,
participants, collaborations, and so forth [2]. A pattern’s
semantic is given by the intent, motivation, and applicability,
which describe what the pattern does, why the pattern is needed,

A preliminary version of this paper was published on ArXiv [1].

and where it is useful. Developers weave this information
encoded as design patterns into their system as they use
them to solve problems. The usage of a pattern is related
to specific design decisions during development. However,
fast development cycles often prohibit the documentation
of these decisions and their rationales. Similarly, the actual
usage of the pattern is seldom documented. Hence decision,
rationale and their materialization in the form of the pattern’s
implementation are lost in the system’s source code. Retrieving
this encoded information such that development, redevelopment,
and maintenance can profit from it is the primary motivation of
Design Pattern Detection (DPD). For the sake of simplicity, we
will use the term design pattern detection to describe the process
of detecting instances of design patterns. DPD is especially
useful for preliminary analysis in maintenance and testing
scenarios where the code is unknown or undocumented. The
detected patterns hint at structures and dependencies, highlight
algorithms and their moving parts, and help to find performance-
critical regions.

The biggest challenge in DPD is that patterns are only a
guideline for implementing a specific solution; hence each
pattern can be implemented in various ways. Each pattern
implementation variant resembles the original intent of the
pattern but may diverge drastically if compared to other
implementation variants. Detecting all variants and mapping
the classes to pattern roles is a non-trivial task as enumerating
the different variants is not sufficient for real-world setups and
their inherent variations.

We use Feature Maps (FMs) as input to Random Forests
(RFs) [3] and Convolutional Neural Networks (CNNs) [4] to de-
cide whether a given set of classes maps to the roles of a specific
design pattern. These feature maps are human-interpretable,
stacked, named subtrees (micro-structures) extracted from a
system’s Abstract Semantics Graph (ASG) that can be used
as a software representation for a small set of classes. Results
indicate that feature maps are an excellent approach to represent
software, enabling robust DPD even if DP instances are highly
under-represented. More specifically, the contributions of this
work are:

• a new, flexible and comprehensible software representation
called feature maps that are useful for software analysis,

• an approach for detecting instances of design patterns in
source code by using feature maps in conjunction with
supervised machine learning,
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• an evaluation and methodology proposal of reproducible
and comparable design pattern detection.

Section II provides background to design patterns and
machine learning. Section III describes our approach for
detecting design pattern instances with feature maps. Section IV
presents the experiment setup and evaluation results. A general
discussion is given in Section V and threats to validity are
discussed in Section VI. Section VII summarizes related
research and Section VIII concludes this work and offers
prospects of design pattern detection with feature maps and
machine learning.

II. BACKGROUND

Two ingredients are crucial for the approach within this work.
First, Design Patterns (DPs) and their intricacies from a Design
Pattern (Instance) Detection (DPD) perspective influence how
detectors are built and evaluated. Thus a more formal definition
helps to frame the problem and its solution. Secondly, Machine
Learning (ML) and its automation capabilities concerning data
modeling are essential to understand the approach and its
evaluation.

A. Design Patterns

A Design Pattern (DP) is a set of roles to which participating
classes are mapped. These classes communicate (structure
and collaboration) in an organized fashion and have specific
semantics (intent, motivation, and applicability) attached to
them. Design pattern (instance) detection reconstructs the
original mappings between classes of a system and roles of
a pattern with respect to their communication such that the
attached semantics provide information about the system under
inspection.

Figure 1 (based on an example by Gamma et al. [2])
illustrates this process in which the input is a set of classes, and
the output is a set of mappings between these classes and the
roles of a specific pattern. In other words, the task is to annotate
a set of classes with the roles of a design pattern. The example
is a subsystem of a drawing tool that uses the Composite pattern
to interact, in a uniform way, with the drawing primitives and
the scene. The Composite pattern organizes objects into a tree
structure where internal nodes delegate specific calls while leaf
nodes implement the actual behavior of the call. Graphic
is the superclass of Picture, Line, and Rectangle and
defines a common interface for these. Picture aggregates
Graphic objects, and delegates calls to the draw-method.
Line and Rectangle provide the actual implementation of
draw, hence are called leafs. The goal is now to find a process
that reconstructs the original mappings between classes and
pattern roles indicated by the question mark in Figure 1. The
left side in Figure 1 represents the initial state of the system
before the detection process. The right side shows the system
with annotated roles after the detection process. Mapping 1,
for example, maps Graphic 7→ Component, Picture 7→
Composite and Line 7→ Leaf.

Each role mapping assigns at least one class to one role
resulting in multiple possible role mappings for the same

subsystem given various implementations of the different roles.
Mappings 1 and 2 differ only in one role mapping which is
a common scheme in design patterns. Primary roles define
the communication scheme within the pattern and drive the
communication through a pattern’s class structure, hence are
often abstractions. Secondary roles provide the implementation
for the abstractions and inherit the protocol from the primary
roles, thus are commonly fluctuating in their class assignment.
A system usually provides multiple versions of the secondary
roles but only a handful of different implementations for the
primary roles. All mappings that share the same primary roles
belong to the same unique role mapping representing one
specific implementation of a pattern within a subsystem. More
formally, a pattern mapping is a k-fold relation between a set
of classes C and a set of roles R with

mPk = {(a, b) ∈ Ck ×Rk : a complies with b}, (1)

in which P k is a specific pattern with k roles. Each unique role
mapping reflects an equivalence class in which the primary
roles are compared. Given a set of pattern mappings MPk

with the equivalence relation ∼Pk :MPk ×MPk in which the
classes mapped to the primary roles are compared, then

〈m〉∼
Pk

= {x ∈MPk : x ∼Pk m} (2)

represents the P k equivalence class from m. That is, all role
mappings of pattern P with k roles that have the same classes
C mapped to the primary roles R. In Figure 1, Graphic
maps to the Component role representing the primary role of
the Composite pattern. Line, Rectangle, and Picture
map to the secondary roles where Mappings 1-2 belong to
the Unique Mapping A. Tertiary roles (e.g., Client) that solely
function as an entry point for the pattern’s communication
sequence are often ignored in detection processes as they do not
carry any useful information. The concept of unique mapping
carries importance in analysis settings where they explicitly
state the boundaries for design pattern instances.

B. Machine Learning

Machine Learning (ML) describes methods that learn re-
lationships or structure from data in an automated fashion.
Essential elements of ML are data (e.g., images or time
series), the model (e.g., Random Forest [3] or CNN [4]), the
optimization procedure (e.g., Adam [5]) and the evaluation
procedure (e.g., Cross-Validation [6] or test-set [7] method).

1) Data: The DPD problem can be framed as a supervised
classification problem in which observations are annotated with
the ground truth (e.g., is an instance of Composite, is not an
instance of Composite). ML algorithms often expect the data
to be independent and identically distributed (i.i.d.) meaning
that the observations are mutually independent and collected
in the same fashion. Especially observation independence is
vital as violating the assumption results over-optimistic model
performance in classification settings.

Data can be preprocessed by standardizing or rescaling
the values into a specific range. In addition to normalizing,
data permutation is often employed to increase the amount of
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Figure 1. The goal is to find a process that can reconstruct the original role mappings of a given pattern. Inputs are classes of a system, outputs are mappings
between pattern roles and the input classes. A unique mapping defines a set of mappings that share the same classes mapped to the primary roles. Component
(Graphic) is assigned to the primary role and defines the communication scheme, while Composite (Picture), Leaf (Line and Rectangle) are classes assigned to
secondary roles. In addition to the Composite design pattern, the example also presents the detection of the Aggregation and Inheritance micro-structures.
Similar to the detection of design patterns, micro-structures are only an assortment of classes that form a class structure. The Composite example is based on
an example by Gamma et al. [2].

available data or to fit models that are robust against simple
transformations (i.e., reduce overfitting) [8]. For instance,
rotating or mirroring an image does not change the objects it
shows (e.g., rotated apple is still an apple).

2) Model: Many different supervised machine learning
models of varying complexity and with different strengths
and weaknesses exist.

Convolutional Neural Networks (CNNs) [4] are fundamental
building blocks in modern machine learning and are prominent
for their capabilities for computer vision problems. They
learn local correlations within volumes and combine these
correlations into high-level features at later stages. For instance,
nearby pixels often correlate with each other, e.g., color and
texture of an apple on the top right corner of an image. CNNs
innately model such local correlations leading to good results
in many domains while still having a reasonable amount of
model parameters.

A Decision Tree [9] recursively partitions the input space
via axis-parallel splits that can be represented as a tree. Each
leaf carries a response (e.g., a pattern class) while the nodes
represent boolean conditions on an input dimension (e.g., is an
interface 7→ {yes, no}). A Random Forest (RF) [3] contains
multiple randomly perturbed decision trees, that reduce the
possible high variance of a single tree. The trees are perturbed
by fitting each on a subset of the data which creates smoother
decision boundaries as multiple splits are averaged in the final
prediction.

Hyper-parameter optimization searches the space of possible
parameter configurations of an ML algorithm that leads to
the best performing model according to some predefined goal
function. For instance, tree depth or partition criterion are
hyper-parameters of a decision tree.

3) Evaluation: It is crucial that the evaluation procedure
provides a measurement of the model that is truthful, i.e.,
it should not over- or underestimate the performance. Cross-
Validation [10] (CV) is a method to evaluate the generalization
performance by splitting the dataset into k-folds. k−1 folds are
used to fit a model while the remaining fold is used to estimate
its generalization performance. This process is repeated k
times leading to k models and estimates that are averaged
into a global generalization performance of the ML algorithm
regarding the dataset and parameters. CV is a nearly unbiased
estimator for the generalization performance except in the
case of small datasets in which the evaluation variance may
misestimate the generalization. Repeated cross-validation may
be used to reduce the variance, trading it for some bias.

Accuracy, Precision, Recall or the Matthews Correlation
Coefficient (MCC) [11], [12] are performance metrics for
classification models. Accuracy, Recall, and Precision are
frequently used metrics and need no further explanation. MCC
is a reliable and balanced performance metric for binary
classification ranging from -1 to 1 describing the strength
of association between model prediction and ground truth.
It provides the most accurate measurement of a (binary)
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model’s performance even if the dataset is imbalanced (skewed
distribution of prediction labels). This does not hold for
Accuracy, Precision and Recall as they do not consider all
types of correctly or incorrectly predicted instances (true/false
positive, true/false negatives).

III. DESIGN PATTERN INSTANCE DETECTION PIPELINE

Figure 2 shows a typical multistage DPD pipeline similar to
many DP detectors [13], [14], [15], [16], [17], [18]. Rectangles
are artifacts while ellipses are processes. Source Code and
Probability are the input and output of the entire DPD
pipeline while Micro-structures, Candidate Role Mappings and
Feature Maps are intermediate artifacts. Feature Extraction
extracts distinctive features from the source code. Candidate
Sampling reduces the total number of mappings that need to be
evaluated. Feature Normalization transforms the features into
a homogeneous space such that the Design Pattern Inference
can reason efficiently about it.

A. Feature Extraction

Feature extraction deals with the inherent complexity of
programming languages by extracting high-level concepts that
later stages can use to successfully find pattern instances (see
Figure 2). DPs describe classes and their loose arrangements
and communication paths. Consequently, extracted features
ideally capture these arrangements and their relationships to
improve reasoning in later stages.

We use Micro-Structures (MSs) [19] as features, which are
very small DPs (usually one or two roles). A MS describes a
general structural or behavioral property within or between a
set of classes (e.g., self-reference, inheritance or method calls).
Casting MSs into an easily readable form allows developers
and algorithms to effectively comprehend these properties. This
includes fast discovery of inheritance and call dependencies but
also complex aspects like the implementation of a Composite
or Decorator pattern.

The most outstanding difference between MSs and DPs
is that the former can be detected using logic or pattern
matching, i.e., their size prohibits variance in their actual
implementation. MS detectors are sub-graph filters retain-
ing only sub-graphs that match their specified predicate.
For example, Inheritance(sup, sub) : T2, (sup, sub) 7→
Ancestor(sup, sub), describes the logic to filter for the
Inheritance MS. Given two Type nodes, sup has to be an
ancestor of sub in order to fulfill the Inheritance predicate.
The result of such an MS detector are sub-graphs from
the program’s ASG that are annotated with the MS roles
illustrated in Figure 1 for the Inheritance and Aggregation
MS. Graphic 7→ Superclass and Picture 7→ Subclass for
one possible Inheritance MS instance. A complete catalog of
Micro-Structures and their detectors is given in our previous
work [20], which is a refined and extended catalog based
on Maggioni’s work [21]. The catalog is made up of three
sub-catalogs: Elemental Design Patterns [22], Design Pattern
Clues [23] and Micro-Patterns [24]. Each sub-catalog was
defined independently with different motivations and goals, but

all of them prove valuable in the process of DPD as Arcelli
Fontana et al. [25] concluded in a series of experiments.

B. Candidate Sampling

Candidate Sampling uses the extracted features (and some-
times the Source Code) to find potential candidates of design
pattern instances in a program’s ASG. As discussed, role
mappings link concrete classes to specific pattern roles which
span a search space of

(
n
k

)
potential mappings where n is

the number of available classes and k the number of roles
that need to be mapped for a pattern. Hence, finding potential
candidates is vital since a full-search is impossible for non-
trivial systems. We used Heuristic Search [20] that we proposed
in our previous work as candidate sampler. Heuristic Search
checks for graph isomorphism [26] between a very general
description of the pattern and classes in the program under
inspection. It uses primary roles as an entry point to iteratively
search for secondary roles that fit the pattern description.
Heuristic Search reduces the usual 2O(

√
n log(n)) isomorphism

search [27] to a search that is linear with the number of types.
For Composite, heuristic search executes the following steps:
1) Collect all types sup that are super-types as Component
(sup 7→ Component); 2) Collect all types sub that are
sub-types from sup and aggregate sub as Composite (sub 7→
Composite); 3) Collect all types sib that are sub-types from
sup and do not aggregate sup as Leaf (sib 7→ Leaf ). Each
found role mapping is a candidate that is later checked in the
design pattern inference stage for their correct consistency with
the pattern. A drawback to this heuristic search is that it might
miss potential pattern instances. The advantage is that these
are simple and efficient algorithms to find potential candidates.

C. Feature Normalization

Feature-Role Normalization (FRN) is the main contribution
of this work. It is used to normalize micro-structures into
a fixed sized matrix called Feature Map (FM). FRN allows
the usage of a wide variety of existing statistical methods
while still retaining the interpretability for manual analysis via
software engineers. Figure 2 shows the pipeline in which first
the features (micro-structures) are extracted followed by the
sampling of candidates from the system. A candidate mapping
is a set of classes that map to the design pattern roles which
may, may not or may partially map to several micro-structures.
Each of the potentially mapped micro-structures may have a
different number of roles, resulting in an inhomogeneous feature
space. This inhomogeneous feature space is problematic in the
inference step as most machine learning methods cannot handle
irregularly structured data. Feature-Role Normalization presses
this inhomogeneous feature space into a homogeneous two-
dimensional feature space that is comprehensible and maintains
enough information to be useful for engineers and learning
algorithms. More specific, the goal of the normalization, is
to take n = |f | features each having mfi = |rfi| roles and
map them to k = |rdi| design pattern roles such that the result
is a fixed-sized matrix. FRN provides one approach to this
problem by creating an n × k matrix where rows represent
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based on the features, pattern instance candidates are sampled from the system. Optionally, the features are normalized and ultimately classified by the inference
method.
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to micro-structures (e.g., number of occurrences of the micro-structure). The
coloring in this example is a gradient based on the role identifiers. Gray spots
represent absent values (zeros).

micro-structures and columns design pattern roles. Values in
the feature map, in the context of DPD, are globally unique role
identifiers (id ∈ N), where no two roles of any pattern have the
same values associated. That said, roles might be shared across
multiple features if they share similar semantic information.
Zeros represent missing features meaning that the class mapped
to the role does not participate in the micro-structure.

Figure 3 illustrates an example of a feature map describing
classes that make up a Composite pattern. Values are role
identifiers colored by a simple gradient, and empty gray spots
are absent mappings (zeros). Rows depict an illustrative subset
of the micro-structures (features) and columns the design
pattern roles to which a set of classes are mapped. The
class assigned to Component is a Superclass with its children
classes assigned to Composite and Leaf. Composite aggregates
a Component, delegating and redirecting method calls to it.

This short example mirrors how software engineers would,
in a slow fashion, go through the source code of a project to
find possible instances of a Composite pattern. Feature maps
simplify this process by compacting the relationships between

multiple classes into new high-level concepts (e.g., a design
pattern) and offer a straightforward way of visualizing them.
Naturally, the visualization can be extended by recoloring,
grouping or filtering the entries of a feature map, or by
visualizing another source code property than identifiers (e.g.,
number of invocations between roles or complexity measures).
This makes FMs a strong visualization technique for software
analysis. They provide a compact view of specific aspects
of a small set of classes allowing a quick overview of their
relationships and class characteristics. Furthermore, the matrix
structure has clear advantages regarding automation as many
methods, e.g., machine learning algorithms, are designed to
work with flat data.

Detection processes that operate on structured data may
circumvent the use of FMs for DPD by directly operating
on the ASG. Examples are Support Vector Machines [28]
(with tree-kernels), Recursive Neural Networks [29], sequence-
to-sequence learning models like Long Short-Term Memory
Networks [30] or Graph Convolutional Neural Networks [31].
These learning algorithms and their respective models might
provide possible performance advantages in the context of DPD
by naturally handling the ASG and the MSs. However, some
lack computational efficiency while others lack interpretability
of the classification decisions.

1) Information Preservation Issues in Feature Maps: FRN
normalizes the inhomogeneous feature space caused by micro-
structures and their roles into a fixed-sized feature map. The
resulting feature map is a sparse representation of attributes
and relationships within and between nodes in an ASG. While
inspired by adjacency matrices, feature maps are not a proper
and full representation of the subgraphs; hence they suffer from
two specific issues: noise and collisions.

A feature introduces noise if it has at least two roles and only
one of its roles map to a class within the FM. Figure 4 illustrates
this problem with the Composite pattern and the features Pure
Type, Inheritance and Delegation. On the left side, the class
assigned to Leaf is a Superclass. However, neither of the other
Composite roles participate in this inheritance hierarchy (both
are 0). The Superclass role of the Leaf class exists in the
project but does not carry any meaningful information in the
context of the current FM mapping. These out of context values
inflate the feature map with irrelevant information and introduce
noise reducing the usability of FMs. A simple solution to the
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Figure 4. The left side illustrates an example of noise (R3) and role collisions (R5/6) within feature maps. Noise is introduced by features that relate to
classes that do not participate in the actual mapping. Role collisions occur if a feature is present multiple times with the same set of mapped classes. The right
side provides a solution to both issues where mappings to classes that do not participate in the actual mapping are ignored (forced to 0), and role collisions are
solved by introducing virtual roles (Rx) that represent multiple roles at the same time.

problem is to force entries to zero in cases where features
depict a relationship, but none of the other mapped classes
participate in it. Figure 4 depicts this solution on the right side
where R3 becomes 0.

A feature suffers from a role collision if it has at least
two roles and multiple instances of the feature trace to the
same classes. Figure 4 (left) illustrate a collision where two
instances of the Delegation MS are present in the classes
assigned to Component, Composite, and Leaf. Composite
delegates to Component and Leaf delegates to Composite. The
multi-assignment for Composite is the result of the class-level
abstraction and compactness of FMs. One possible solution is
to introduce virtual roles that describe two or more roles like Rx
in Figure 4 on the right. Virtual roles incur a certain amount of
information loss (direction of relationship) especially if multiple
virtual roles have to be used for a feature in a FM. However,
virtual roles also allow to express self-loops, for instance if
a class aggregates itself (it is Aggregator and Aggregate at
the same time). These self-loops are helpful in many cases,
for example, 50% of the Singleton pattern instances contain
Creation Site / Type To Create indicating that the class is the
factory for itself. This information is essential in the context
of Singleton detection.

D. Design Pattern Inference

Design Pattern Inference is the last step of the DPD pipeline
(Figure 2) and receives feature maps as input. During training
time the models and their parameters are optimized toward a
labeled dataset of feature maps. During production time the
models only return the probability that an FM belongs to the
model’s optimized pattern or not (no labels, no model parameter
modifications). The detailed intricacies of the training and
production time are subject to the selected model class and may
differ quite drastically. For instance, a CNN is optimized via a

gradient-based algorithm while decision trees are constructed
by splitting the input dimension values via an information
theoretical criterion (training time).

IV. DESIGN PATTERN INSTANCE DETECTION STUDY

This study frames the process of DPD (see Figure 1) as a
binary classification problem. Each design pattern is detected
by a separate model that provides the probability that the
input FM belongs to the design pattern. Naturally, multi-label
classification, i.e., multiple patterns per observation (FM), is
supported by feeding the same FM into different models.

Given this setup, we conducted several experiments with
FMs in the context of design pattern instance detection. For
better reproducibility and comparability we evaluated only the
last two stages of the DPD pipeline highlighted in Figure
2. Experience shows that reimplementing the entire pipeline
of a DPD approach including the intermediates (e.g., sampler
results) while making the detection results comparable is nearly
impossible. That said, the entire pipeline from Figure 2 was
implemented, and details about the specific implementation
of micro-structures and candidate samplers are given in our
previous work [20]. The following evaluation and experimental
methodology should be seen as a minimal effort to guarantee
comparable research in the future.

A. Controlled Variables

Detecting design pattern instances can be a daunting task
as there are numerous ways to encode software (e.g., feature
maps), select potential candidates (candidate sampling), and
build classification models (e.g., RFs or CNNs). In total, the
study controls for 7 Experiment Parameters (ExP).

1) Pattern: Four widely used patterns are considered {Sin-
gleton, Template Method, Composite, Decorator}. This
selection is based on previous studies [18], [32], [25],
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[16] but also represents an even selection regarding
their categorical distribution (creational, structural and
behavioral patterns).

2) Role Count: A confounding variable is the number of
roles of the pattern. The expectation is that patterns with
one role are easier to detect than patterns with 2 or 3 roles.
However, more roles also imply more conditions through
which better precision in the classification can be achieved.
The selected patterns have a linear role count distribution
with {1, 2, 3, 4} roles for {Singleton, Template Method,
Composite, Decorator} excluding tertiary roles.

3) Classification Model: {Random Forest, CNN} were
selected as classification model classes. The rationale for
selecting CNNs is their natural ability to handle volumes,
i.e., to process FMs while leveraging their structural
information. RFs were selected as they are a popular
and efficient choice in many ML tasks and are more light-
weight regarding hyper-parameters in contrast to CNNs.

4) Negative-Positive Candidate Ratio: Non-trivial software
systems expose a combinatorial number of possible class
mappings that can function as pattern candidates. This
means a practically infinite number of pattern counterex-
amples can be found within a system. The candidate
samplers (Section III-B) that mitigate this issue favor
recall leading to imbalanced distributions of positive
and negative examples. Negative-Positive Candidate Ratio
(NPCR) captures this skew in the data. The study explores
NPCRs of {1, 2, 4, 6, 8, 10}.

5) Data Augmentation: Shuffling of rows was used as data
augmentation method to increase the dataset size and
classification difficulty. This inhibits the classifier from
learning specific relationships between rows, instead of
their content. A permutation count of {0, 1, 5, 10} states
how often the dataset was copied, rows augmented and
added to the dataset. Permuting rows and columns was not
considered as it would result in a nearly random matrix
destroying any structural information captured in feature
maps.

6) Optimization Budget: A budget of {200} evaluations
was available for each model class (RF or CNN). These
evaluations were used to tune their hyper-parameters (such
as the number of units within layers, or depth of tree).
The optimization selected hyper-parameter configurations
that maximized the MCC.

7) Instance Independence: Describes the confounding vari-
able that instances within a unique mapping correlate
thus result in too optimistic classification results if not
properly handled. Using standard cross-validation mixes
mappings from the same unique mapping into training and
test-folds making the folds not independent. This leads to
too optimistic evaluation results as the training examples
leak information between training and test phase. We used
{project-fold cross validation} to avoid information leaks
(correlations between samples) during the trials.

Table I
THE 9 PROJECTS CONTAINED IN THE P-MART DATASET. FOR EVERY
PROJECT THE ORIGINAL AND THE REVISED (EXCLUDING INSTANCES

OUTSIDE OF THE AVAILABLE SOURCE CODE) NUMBER OF DESIGN PATTERN
INSTANCES (I.E. MAPPINGS) AS WELL AS THE NUMBER OF UNIQUE

MAPPINGS IS GIVEN.

Project Original / Revised / Unique
Singleton Template Method Composite Decorator

JHotDraw 2 / 2 / 2 68 / 34 / 2 3840 / 960 / 1 176 / 44 / 1
JRefactory 2 / 2 / 2 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
JUnit 2 / 2 / 2 0 / 0 / 0 222 / 74 / 1 396 / 132 / 1
Lexi 2 / 2 / 2 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
MapperXML 3 / 3 / 3 88 / 44 /4 340 / 85 / 1 0 / 0 / 0
Netbeans - / - / - - / - / - - / - / - - / - / -
Nutch 1 / 1 / 1 14 / 7 / 2 0 / 0 / 0 0 / 0 / 0
PMD 0 / 0 / 0 1 / 0 / 0 3 / 0 / 0 0 / 0 / 0
QuickUML 1 / 1 / 1 0 / 0 / 0 120 / 30 / 2 0 / 0 / 0

Total 13 / 13 / 13 171 / 85 / 8 4525 / 1149 / 5 572 / 176 / 2

B. Response Variables

The result of each experiment trial was the generalization
performance of the classifier evaluated through cross-validation
and measured by {Accuracy, Precision, Recall, F1, Matthews
Correlation Coefficient}. MCC was selected as the primary
evaluation metric as it provides the most unbiased single
number metric for binary classification.

C. Data Source

A total of 4 widely used design patterns were selected for the
study, each having peer-reviewed classification examples. These
peer-reviewed classifications are given by nine projects that
are part of the Pattern-like Micro-Architecture Repository (P-
MARt1 04/10/19) [33]. Applications within the repository range
from modeling and drawing tools to static analysis and refactor-
ing frameworks, therefore its diversity is a good representation
for the real world. Table I contains the distribution of design
pattern instances across projects. Original are the mapping
counts in the exploded form provided by the dataset. Revised
are the mappings after a manual cleanup of the data. Some
design pattern instances trace to classes not contained in the
available source code repositories (e.g., java.awt, javax.swing,
or third-party libraries) and were removed. Projects that did
not include the target pattern were also not considered during
the experiments (for the respective pattern) as controlling for
imbalance (NPCR) is impossible, e.g., JRefactory for Template
Method. At last, the Netbeans project was excluded as we were
not able to parse it. Fixing the source code pieces in question
was deemed futile as they were too numerous introducing
potential bias in the evaluation. Unique are the unique mappings
after the revision.

D. Procedures

First, 67 micro-structures were extracted (Section III-A)
and possible candidates sampled (Section III-B) as shown
in Figure 2. The micro-structure extraction and candidate
sampling were based on our previous work [34]. Feature-Role

1http://www.ptidej.net/tools/designpatterns/index_html#2
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Normalization (Section III-C) created the feature maps for
each candidate and pattern. Cells within the FM were globally
unique role identifiers (id ∈ N) which received no further
preprocessing such as rescaling or standardization. Further,
no specific assignment strategy was employed for identifiers,
i.e., role identifiers were assigned in their encountered order
resulting in a total value range of [0, 161] including the virtual
roles.

The controlled variables from Section IV-A were executed
in a systematic fashion resulting in the response variables from
Section IV-B. All features (rows) were included. First, the FMs
were collected into datasets, and negative-subsampling was
applied according to the NPCR ratio (ExP 4). The dataset was
then copied, permutated, and added k times (ExP 5). FMs were
provided to CNNs as-is and linearized (row-wise) into a vector
for RF. Then the models were fitted (ExP 3) and evaluated
using project-fold cross-validation (ExP 7). This procedure was
repeated 200 times in search of the optimal hyper-parameters
(ExP 6) and for each pattern (ExP 1).

E. Experiment Results

The experiment parameters led to a total of 384 trials in
which 76800 classifiers were fitted. The bulk of these classifiers
were part of the optimization budget (ExP 6). In total, the best
performing top-30 classifiers (including ties) for each Pattern,
Model, and NPCR combination was selected for the evaluation.
For instance, the boxplot in Figure 5 for the Singleton pattern at
an NPCR of 1 represents the top-30 classifiers of this category.
Furthermore, Table II contains the average test performance
(marginalized over NPCR) for each pattern and model.

Using the Evans guidelines [35] for interpreting correlations,
we see that CNN models have on average a strong performance
with a Median (Med) 0.646 and an Interquartile Range (IQR)
of 0.528 to 0.772. The worst median performance is given
by the Template Method classifiers reaching a moderate
mccMed = 0.51; mccIQR = (0.43, 057)). Best median
performance is given by the Composite pattern with strong
mccMed = 0.79; mccIQR = (0.71, 0.85). The total variance
in these estimates is acceptably low and would cause in the
worst case a performance drop of mcc∆ = 0.16 degrading
it to a moderate classifier. CNNs are rather robust against
data imbalance with an average NPCR 1 to 10 change of
mcc∆ = −0.064.

RF models are quite similar to CNN models for patterns
with low role count but degrade quite drastically for patterns
with four roles. RFs have on average a moderate performance
with mccMed = 0.48; mccIQR = (0.29, 0.64). At least a
moderate (mccMed = 0.47;mccIQR = (0.41, 0.52)) up to a
strong performance (mccMed = 0.79;mccIQR = (0.67, 0.83))
is given, excluding the Decorator models that were systemat-
ically worse (mccMed = −0.35;mccIQR = (−0.38,−0.29))
than a random model (mcc = 0). Again, the best perfor-
mance as reached for Composite patterns with mccMed =
0.79;mccIQR = (0.67, 0.83). On average, RF models exposed
a variance of mcc∆ = 0.14 (Composite).

Figure 5 shows the effect of NPCRs on the classifier’s
performance. Both, CNN and RF suffer from imbalance except
in the case of the Singleton pattern. CNNs are on average (all
patterns) more robust against imbalance with an average NPCR
1 to NPCR 10 difference of mcc∆ = 0.064. However, they
degrade for Composite and Decorator. The average difference
for RFs is mcc∆ = −0.16.

Tests for independence [36] regarding MCC between CNN
models with different permutation counts (ExP 5) were close to
significant χ(3, 730) = 7.5245, p < 0.057. Permutation passes
for RF models were significant with χ(3, 745) = 75.117, p <
3.42−16. There was a significant effect concerning the NPCR
for both model types with CNN (χ(5, N = 730) = 43.553, p <
2.85e−8) and RF (χ(5, N = 745) = 18.041, p < 0.002).

V. DISCUSSION

The presented results in Section IV-E fit with the intuition
that 1) patterns with more roles are easier to detect, 2) models
have a decline in performance with larger NPCR, 3) FMs fit
well in the framework of CNNs.

Patterns with more roles inherently have more conditions that
have to be met as each role describes some specific behavior
a participating class must fulfill. This avoids unintentional
implementations of these patterns and their detection because
of a more elaborate structure and communication flow. Template
Method, for example, describes a very general and freely used
concept of abstract classes that defer implementation details
of an algorithm to subclasses. Not only is this implementation
technique used without actually having the intention to imple-
ment the Template Method pattern, but also pre-labeling of the
dataset in this regard might prove challenging because of its
general applicability. In contrast, Composite or Decorator use
inheritance in conjunction with redirection techniques forcing
the classifier to focus not only on inheritance but also the
redirection aspect between multiple classes. Both patterns
achieved excellent results that are quite robust across different
NPCRs using CNNs (low degradation and low variance).
However, RF, while similar to CNN for Singleton and Template
Method, strongly degrades with patterns that have more roles
(both variance and bias). This is to be expected as FMs encode
relationship information in a 2-dimensional format (matrix)
which needs to be serialized (loss of structural information)
into a vector. Furthermore, serialization with patterns that
have, e.g., four roles (Decorator), result in a 67 × 4 = 268
dimensional input vector. We did not explore the invertibility
of the negative correlation (systematic mistakes) that RFs
made for the Decorator. However, a simple inversion of the
predictions might not generalize as expected and is open for
further research. Nevertheless, RFs are still a good and fast
solution for patterns with 1-3 three roles as the performance
in Figure 5 shows.

The degrading performance of models with higher imbalance
is often an issue. The minority class (class with lesser samples)
is outweighed and too seldom encountered during training of
the classifier in order to learn the essential aspects of it. Figure 5
shows that the performance degrades with higher NPCR. Still,

214



Table II
AVERAGE TEST-PERFORMANCE OF THE CONVOLUTIONAL NEURAL NETWORK (CNN) AND RANDOM FOREST (RF) BASED DETECTIONS.

Model Pattern Accuracy Precision Recall F1 MCC

CNN

Singleton 0.88± 0.09 0.82± 0.12 0.73± 0.12 0.76± 0.10 0.72± 0.14
Template Method 0.82± 0.09 0.63± 0.18 0.62± 0.20 0.58± 0.14 0.51± 0.12
Composite 0.94± 0.02 0.86± 0.11 0.80± 0.14 0.82± 0.10 0.79± 0.10
Decorator 0.81± 0.10 0.69± 0.15 0.80± 0.17 0.72± 0.13 0.60± 0.16

RF

Singleton 0.81± 0.07 0.63± 0.12 0.59± 0.12 0.59± 0.06 0.47± 0.06
Template Method 0.85± 0.04 0.66± 0.21 0.58± 0.16 0.59± 0.15 0.49± 0.12
Composite 0.93± 0.04 0.89± 0.10 0.71± 0.21 0.77± 0.16 0.79± 0.14
Decorator 0.45± 0.06 0.10± 0.15 0.09± 0.13 0.09± 0.12 −0.35± 0.10
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Figure 5. Each boxplot represents the top-30 fitted models for a given pattern and model, illustrating the trend across imbalanced datasets (NPCRs). Trends
indicate that Feature Maps are a robust representation for DPD even in highly imbalanced settings.

the underlying trends are rather shallow except for Template
Method. The increase in performance for the Singleton pattern
is most likely related to the amount of available data. With
only 13 examples it is expected that the classifiers use the
extra negative samples to make the overall predictions more
robust. In total, the degradation of performance over NPCRs is
less extreme than initially anticipated. Though, it would need
an additional study to attribute this effect properly.

FMs work well in the framework of CNNs because of their
natural processing of volumes. CNNs are able to partially
replicate the human DPD process via feature maps described
in Section III-C. For example, a 3 × 3 filter can combine
Aggregation, Inheritance, and Delegation across Component,
Composite and Leaf in the first convolutional step from Figure 3.
The result would be a higher level internal feature (of unknown
quantity and semantics) representing this combination. Each
layer then computes an even more abstract interpretation of
the original feature leading to a good prediction. The same
does not necessarily hold for RFs as the structural information

(relationships between DP roles) would need to be recovered
from the serialized vectors while still focusing on the content.
We think that this natural advantage of CNNs resulted in the
overall better performance especially for patterns with more
roles.

Permutation passes increased the performance for RF classi-
fiers and acted as additional regularization for CNNs without
any performance loss (nor significant gain).

An advantage of NPCR (or generally imbalance) analysis
is that it allows for direct comparison with other results via
linear interpolation between NPCRs (as long as the datasets are
the same). Zanoni et al. [16] conducted a similar study (same
dataset) where they used multitudes of different classification
models to find DPs. They report Accuracy for their best
performing models without explicitly reporting the NPCR
values. We sketch a comparison by interpolating our results
to match their NPCR (computed form the ZeroR model)
and compare our average model accuracies with their best
model accuracies. Their best result for the Singleton pattern
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(NPCR ≈ 1.66) was given by an RF model with acc = 0.93.
Our RF is 20% worse with acc = 0.73, and the CNN is 19%
worse with acc = 0.77. Their best Composite (NPCR = 3)
model (ν−SV CRBF [37]) reaches acc = 0.81 where both of
our models are better (CNN acc = 0.93 and RF acc = 0.90).
Their best Decorator (NPCR ≈ 1.48) model given by an RF
with acc = 0.82 which is quite similar to our average CNNs
with acc = 0.79. No data for Template Method is available.
These results show how well FMs are suited for DPD given
that we compared the average performance and not the best
performing models. Besides, the authors used ordinary 10-
fold cross-validation in which instances from the same unique
mapping may leak information between evaluation and training
folds.

VI. THREATS TO VALIDITY

An internal threat to validity is given by the dataset (P-MARt
04/10/19 [33]) we used to train and evaluate our approach. We
inspected many projects and their respective labeled design
patterns in order to understand the misclassification during
the experiments. Many of these projects are already outdated
using old Java versions that forced the developers to take
strange roundabouts in their implementations. Consequently, it
is possible that some design patterns would be implemented
differently today. For instance, the Singleton pattern is in
modern systems most likely implemented via dependency
injection frameworks. Furthermore, we could not understand
some of the labeled pattern instances as they seem to diverge
too far from the original design pattern definition.

The size of the dataset poses a threat, especially for the
Singleton pattern as the model may overfit. To mitigate
this thread we used repeated cross-validation to estimate
the generalization performance on unseen data, added data
augmentation (increases amount of observations), and included
additional model specific regularization methods. Random
forests naturally regularize with an increased number of trees.
We used Dropout [38], kernel and activation regularization (L1,
L2 [9], [8]), and early stopping [39] to regularize the CNNs.

Our experiment design tried to eliminate most external threats
by using multiple patterns with different numbers of roles, with
multiple bootstrapped datasets and different NPCRs. However,
it only evaluates the performance of one pattern with k number
of roles, and generalizing it to all patterns with k roles may only
be possible on a limited scale. Nevertheless, the broad sample
of models still provides valuable insight into the methodologies
performance in many different settings.

VII. RELATED WORK

The DPD research community has a long and active history
with various approaches, tools, and methodologies. Several
interests can be distilled from DPD and that are reflected in
Figure 2. A coarse classification of these interests is feature
extraction, intermediate representations, candidate sampling,
and inference methods. This work focused on intermediate
representations and inference methods.

Zanoni [16], with whom we compared our results, uses micro-
structures, clustering, and various machine learning approaches

to find design patterns. Along with Arcelli, they proposed a
framework that uses these techniques called MARPLE [19].
Most influential work for feature maps and our approach is
given by Tsantalis et al. [18], in which they extract adjacency
matrices from the ASG reflecting a specific aspect. An example
of an aspect would be Generalization or Association, and
in such a way they may be seen as micro-structures. The
approach itself compared the adjacency matrices from patterns
with the matrices extracted from the system via an iterative
similarity scoring algorithm proposed by Blondel et al. [40].
Their approach provides nearly always a recall and precision
of 1 for the patterns detected in this work. However, their
evaluation is only based on three manually inspected projects
(JHotDraw, JRefactory, and JUnit). The authors accounted
for subjective bias through manual inspection but did not
mitigate its possible impact. Finally, they report that their
methodology suffers from computational inefficiency caused
by the (adjacency) matrices and the matching algorithm.

One big issue in the DPD community is that results are hard
to reproduce and compare because of the multistage nature of
detectors. Fontana et al. [41] give an attempt to make results
comparable. Nevertheless, the approach is a community-driven
web-based benchmarking system that suffers, like many other
community-based approaches, from the cold start phenomenon,
i.e., it provides not enough upfront benefit to justify its usage
in the first place. To improve this situation, we employed an
evaluation strategy that decouples the last stage of the DPD
pipeline simplifying the reproducibility and comparability of
the results to the availability of the dataset that candidate
samplers produce. Furthermore, we provided a comprehensive
approach to evaluate detectors in a more general fashion than
peak performance models.

VIII. CONCLUSION

This work presented Feature Maps (FMs), how they are
computed via Feature-Role Normalization (FRN) and used
for design pattern detection. Feature maps themselves can
be understood as flexible and comprehensible source code
representation useful beyond DPD. For DPD, FMs provide
a representation that allows for robust detection performance
even if the datasets are strongly imbalanced. In conclusion,
FMs do not only help to extract the information developers
weave into their systems, but also provide means to represent
and comprehend them in a compact fashion.

In the future, we are planning to extend the study on FMs in
the context of DPD by applying the methodology to more
design patterns and a bigger dataset. Futhermore, we are
planning to compare the methodology to learning algorithms
that handle graph representations natively.
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